Math 131B-2: Homework 8

Due: May 30, 2014

1. Read Apostol Sections 1.21-27, 1.29, 1.32, Tao Sections 16.1-2. [You may also wish to compare Tao Chapter 15 to the Apostol reading.]
2. Do Apostol problems 1.27, 1.30, 1.36.
3. Prove the inequalities for the complex norm from class, namely that

- $|R(z)| \leq|z|$
- $|I(z)| \leq|z|$
- $|z| \leq|R(z)|+|I(z)|$
- $|z+w| \leq|z|+|w|$

4. Prove that $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ and $\sin (x+y)=\sin (x) \cos (y)+$ $\cos (x) \sin (y)$.
5. Find the Taylor series expansions for $e^{x} \sin x$ and $\ln (1+x) \tan ^{-1}(x)$ about 0 . Note that if your solution involves the product rule, you're working too hard.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is differentiable at x_{0}, with $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right) \neq 0$. Show there exists a $c>0$ such that $f(y) \neq 0$ for $0<|x-y|<c$. In particular, show there is a $c>0$ such that $\sin (x) \neq 0$ for $0<x<c$.
7. Let $\tan (x)=\frac{\sin x}{\cos x}$.

- Show that the tangent function is differentiable and monotone increasing on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, and thus invertible.
- Show that the derivative of $g(x)=\tan ^{-1}(x)$ is $\frac{1}{1+x^{2}}$. [Hint: What do you know about the derivatives of inverse functions from last quarter?]

8. Prove that a continuous 1-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$ is bounded. Give an example showing that if f is not assumed to be continuous, this need not be true.
